Category Archives: Policy

Science and Activism – Why Can’t We Be Friends?

By: Rose Eveleth

As most of the bloggers here are future scientists, I thought it might be interesting to bring up an issue making headlines recently.  Dr. Janet D. Stemwedel explains in a short (albeit quite biased) blog post what Dr. Dario Ringach – formerly at UCLA – has had to endure recently as a researcher working on experiments that use animals.  In short, activists have come to his house, beat on his doors and windows, and intimidated his family and friends.  Dr. Ringach resigned from UCLA when they provided neither support, nor protection.  In the past few weeks, activists have adopted a new plan to attack Ringach’s family.

The LAist confirms that the animal rights activists plan to go to Dr. Ringach’s children’s school to protest and “educate fellow students what their classmate’s father does for a living.”  They have protested at his home before, and now they are going to his children’s school.  One activist writes, “we’ll just tally up the kids as collateral damage, a small price to pay for all the attention it’s getting now.”

Scientific research has long been viewed from afar by “everyday citizens” as suspicious, fraudulent, and perhaps immoral.  What those people in lab coats do is mysterious, confusing and sometimes scary.  This is the same sentiment that causes doubt of every scientific finding, from relativity, to climate change.

Citizens have the right to ask questions and demand transparency in science.  It has become increasingly clear that good science cannot be done without some kind of accountability and reporting mechanism to the people.  Animal rights activists have the right to demand structures in the scientific world that defend animals from misguided research, and yes, such research certainly does happen.  Does that mean they should terrorize a child’s school?  No.  But it does bring up some interesting questions, very salient to the writers here on this blog.

How much responsibility do scientists have to explain themselves to the public?  Is that what science journalists, public information officers, the Discovery Channel, or this blog is for, or is there more.  Many of the arguments that doctors and PhD’s are citing in response to Animal Rights groups is that if they knew how much good animal testing did for medicine they would surely think twice.  If they understood the science behind the experiments, the long term goals and the current success stories.  It is so easy for scientists to say “if only they understood the science, then they would understand.”  Yet none of these scientists appears ready to explain that science to the activists.  Is that not part of the scientist’s job description?

There are certainly bright spots.  At UCLA, they recently had a panel to discuss, civilly, the issue of Animal Research.  The sponsoring group, Bruins for Animals, is saddened to hear that some activists are harassing children and researchers, saying on their website “Some appear determined to continue with their attempts at interfering with this fresh direction the debate is taking.  In a move that defies logic, these activists are now suggesting that children are legitimate targets of their protests.”

It is my hope that the new generation of activists is more like Bruins for Animals, willing and ready to sit down and talk about what the problems are and how to fix them, and perhaps, in the end, realizing that differences of opinion are not just healthy, but important.  If no one questioned science, no good science would get done.  But please, stay away from the children.

1 Comment

Filed under Health, Policy

Rising Sea Levels and the Bengal Tiger

Endangered Species Case Study: Bengal Tiger
by Krista Bergesen

Tigers have long thrived in a variety of habitats across the Asian continent. Extremely adaptable, these solitary hunters have found their niche in extremely different climates: from the the frozen forests in Russia to the much hotter, tropical climates in India and Indonesia.

However, at this time, it seems that tigers are losing habitat at too quick of a pace to stay a viable species. Because of human activities, tigers have been pushed into a small portion, only 7%, of their historic habitat, leaving only around 3,200 tigers left in the wild.

The Bengal tiger has long occupied vast areas of Indonesia and India, and an especially large portion in what is called the Sundarbans. This large forest of mangroves provides food and shelter to many different species, including around 400 Bengal tigers, an extremely large number  given the already dwindling population as a whole. Although the numbers are not conclusive, it is estimated that around 10% of the entire tiger population lives in this large stretch of mangrove forest.

The controlled environment of the Sundarbans strongly promotes biodiversity. Fish use the area beneath the submerged mangrove roots to breed, while the trees shelter the coastal and intertidal zones from cyclones, wind damage, and storm surges. As many as 50 reptile species, 120 fish species, 45 mammal species, and 300 bird species call this forest their home. And tigers here play a very singular role in the ecosystem, swimming between the islands of this area and collecting food from the marine life in addition to spotted deer for their diet.

This area, unfortunately, is in danger. And not just from poachers or deforestation, but from rising sea levels. Global warming has done it yet again. By the year 2070, the sea levels around the Sundarbans are predicted to rise 11 inches. With this drastic rise, the environment will no longer adequately support the tigers or many other species that thrive within the mangroves. And with accelerating habitat destruction, this large forest may not even exist in 50 years at all.

The effects are projected to be devastating. From the estimated 400 tigers alive now, the population is predicted to sink to around 20 breeding tigers because of the 96% decrease in habitat. In addition to the continued effects of poaching and deforestation, the rising sea levels could lead this subspecies into extinction, joining the 2 tiger subspecies already extinct.

The situation seems hopeless. However, local governments have the chance to conserve the threatened mangrove forest as well as curtailing the rampant poaching problem. Also, the region can increase sediment delivery and freshwater flows to the Sundarbans for replenishment of the land. Although this is probably easier said than done, it is hopeful that the situation can be resolved through progressive laws and environmental protection efforts. But it doesn’t end there. The globe as a whole needs to reduce greenhouse gas emissions, otherwise the above efforts and changes will be ineffective in saving the Sundarbans, and with it, its rich biodiversity.

Sources:

Poston, Lee. “Climate Change Threatens to Wipe Out One of World’s Largest Tiger Populations this Century” <http://www.worldwildlife.org/who/media/press/2010/WWFPresitem14891.html&gt; 19 Jan. 2010. 22 Feb. 2010.

“New Study Shows Bengal Tiger’s Habitat in Danger.” <http://www.worldwildlife.org/who/media/press/2010/WWFPresitem14914.html&gt; 19 Jan. 2010. 22 Feb. 2010.

1 Comment

Filed under Biology, Ecology, Policy

Cleft Lip and Palate Reconstruction

By: Sonya Chitra Subash

What is a cleft lip and palate? Most commonly signified by a ‘harelip’, or slight gaping holes in the roof of the mouth, cleft lip and palate is a benign genetic birth defect affecting approximately one in every seven hundred children born in accordance to the Cleft Lip and Palate Association. Asians are the most affected, while African- Americans are least affected. Research being conducted by the Cleft Lip and Palate Association is still in progress to understand the main underlying reasons. For the births occurring in developed countries, a simple set of procedures is enough to fix this nonfatal defect. However, in developing countries, a child born with such a minor disfigurement is subjected to life as an outcast without proper treatment. They are shunned from the community, subjected to taunting, rejected for job opportunities, abandoned by family members, subjected to witchcraft rituals, and sometimes attacked and killed.

How does this defect occur? Sometimes during embryonic development, the upper lip and the roof of the mouth do not fuse properly. This typically happens during the first six to ten weeks of gestation. The physical severity of this birth defect can range from a minuscule to notch in the upper lip to a large groove. The severity of the physical deformity can also lead to complications with the ears, nose, and mouth. Ear infections will occur more often (due to the inability of the muscles of the palate to open the Eustachian tubes that allow for the middle air to drain, causing a rapid collection of fluid), and speech pathologists are often needed to help the child with speech development.

What is the treatment? The treatment to cure and better the quality of life is simple. Surgery to close the lip and palate together is not life threatening, and oral maxillofacial surgeons provide surgeries to fix this.

One surgical technique used is ‘bone grafting’. A small portion of bone is extracted from the patient’s hip, ribs, leg, or head and is placed in the cleft area (the bone protected by the upper lip) to introduce great support for un-erupted teeth that will grow as the child’s mouth develops after the surgery. This is usually most effective if the patient is five to six years old during the treatment. The added bone will make the gum appear more natural, and help increase the strength of the pre-maxilla (the front part of the roof of the mouth).

Older people affected have a lesser chance of having a perfectly symmetrical gum, but dentists can perform procedures using prosthetic teeth. Metallic dental bone implants are also used-the proper treatment will vary per patient. However, the cost of these procedures can be expensive, especially for those afflicted in developing countries where resources are scarce.

How can I help? There are many specialists in the US available for help with cleft palate reconstruction, and many organizations that travel to developing countries are available to aid. One organization, Operation Smile does humanitarian work with volunteers and dental specialists every year. Mission trips continually leave from the US, and anyone can help in some way. Smile Train, another organization, is in constant need of donations to keep funding its mission trips as well. We often underestimate, or don’t necessarily think about, the value of a smile. In developing countries it is worth more than it is here in the US, and volunteers are always needed to help aid these missions.

Information regarding sources and organizations in this article can be found at the following websites:

Cleft Lip and Palate Association: http://www.clapa.com/

Operation Smile: http://www.operationsmile.org/

Smile Train: http://www.smiletrain.org/

Leave a comment

Filed under Health, Policy

Dangerous Dioxins

By: Lizzie Caldwell

According to Chemical And Engineering News, the US Environmental Protection Agency(aka EPA, largest government agency in the US to protect human health and the environment) has recently proposed to tighten its guidelines for remediation dioxins and related chemicals in soils.


Dioxins are chemicals that are extremely dangerous for humans. The full name is “polychlorinated dibenzodioxins”. This name sounds long and complicated, but let’s break it down.

“Poly” means multiple. “Chlorinated” means it has chlorine, so we know that a typical dioxin molecule has multiple chlorines as a part of it. We’re halfway there!
“Di” means two. “Benzo” is the prefix for “benzene”, which is a 6 carbon ring:


Benzene molecule.

The C is carbon, the H is hydrogen, and the lines represent that the two atoms are connected. Two lines means the connection is “stronger” than one line, etc. Beside it is its shorthand version, which is what is commonly used.


Benzene is the simplest carbon ring ever, and it is everywhere. It is used to make plastics, rubber, drugs, and dyes. It used to be in our gasoline, until we realized that benzene causes cancer. Thus, from this name, we already know that the molecule is bad. For the last part, “di” means “two”, and “oxin” is the prefix for oxygen; thus, polychlorinated dibenzodioxin has two benzene rings, two oxygens, and a variable amount of chlorine atoms(which can be anywhere from 1 to 8). These molecules are generally referred to as “dioxin” for short.

PCDD, or polychlorinated dibenzodioxin. (The “n” and the “m” just symbolize that there are chlorines present, it just depends on the dioxin as to how many chlorine atoms on each benzene ring.)

How is dioxin worse than benzene? This rule can be applied to any molecule: organic molecules that occur in nature, like benzene, break down rather quickly. Organic molecules with chlorines attached to them, like most dioxins, make the molecule very stable. Thus, while benzene causes cancer, it only lasts from 3 – 10 days before it breaks down and is no longer dangerous. Dioxin, on the other hand, lasts from 7 – 10 years(Dioxinfacts.org). Imagine how many cancer-causing molecules one individual can accumulate if they lived near a place that produced dioxin molecules!


One type of dioxin, called “tetrachlorinated dibenzodioxin”(that means it has 4 chlorines. tetra = 4) is a powerful herbicide.

Picture of TCDD(tetrachlorinated dibenzodioxin).

It kills vegetation by making it grow uncontrollably until it dies. It is a byproduct of the molecules used to make Agent Orange. It was used during the Vietnam war, and the dioxins are still found in their soil today. The National Toxicology Program defined it as a cancer-causing molecule, and has been linked with non-Hodgkin’s lymphoma, Hodgkin’s disease, and chronic lymphocytic leukemia. It has affected the lives of hundreds of thousands of people; Europeans, veterans who were also exposed, and now, residents of the state of Michigan.

How did dioxins get to Lake Huron? Normally, dioxins are created in manufacturing plants. Manufacturing plants use a lot of fire and heat to make whatever they need; and when heat and chlorine are present around organic molecules(like benzene, a 6-carbon ring), a reaction happens that creates dioxins. Manufacturing plants don’t mean to make dioxins, it’s just a by-product of their process to make the chemicals and products they want to sell to you.


One of the unfortunate characteristics of dioxin is that it is aromatic – which means that it evaporates into thin air, there it can be easily distributed. This is how dioxin ends up in close lakes, and in the soil. Dioxin is a very expensive and inconvenient responsibility that EPA cleaned up for years. In 1998, the EPA made it the company’s responsibility to clean up the mess, and they set up guidelines. Now, with new reports claiming that dioxins are also present in soil, EPA wants to strengthen its guidelines to include soil. Dow Chemical’s spokeswoman criticizes the new guidelines, saying that “Soils aren’t really a primary route of exposure”(Chemical and Engineering News, Jan 2010). Luckily for Dow, the EPA cannot implement these new guidelines until it finishes reassessing health and environmental risks associated with dioxins; but we can all agree we don’t want dioxins around, isn’t that right, Ukrainian politician Viktor Yushchenko?

Before dioxin poisoning                  After dioxin poisoning

Leave a comment

Filed under Chemistry, Ecology, Policy

Plant and Animal Invaders

Plant and Animal Invaders
by Krista Bergesen

The year 2010 marked the beginning of the UN’s International Year of Biodiversity in response to the present planet’s extinction crisis. But after a while, a person could start to wonder: what are some of the driving forces behind the loss of biodiversity on the planet? Well, there’s fossil fuel burning and deforestation to name a couple. That isn’t the end of the story, however.

Humans may have messed around with the ecological system even more than you may think. The increase in travel and importation going along with a global economy has allowed the transportation of many non-native plants and animals to sensitive habitats.

And that is just the beginning. These invasive species consume the resources of the original flora and fauna in the system. According to the International Union for Conservation of Nature, 40% of species are recorded as extinct because the effects of invasive species.

This has even caused economic damage. Yearly, 1.4 trillion dollars are spent worldwide on control measures and habitat restoration because of the havoc wreaked on the environment. The US itself suffers a loss of 138 billion dollars a year just for its own issues with invasive species.

As already stated, the unattended and unmanaged environment containing invasive species can result in extinction of native species. What’s worse is that the changing global temperatures are enabling non native species to gain a stronger foothold in their new environments.

For example, British Columbian forests are being plagued by mountain pine beetles, whose population has invaded and subsequently increased in number due to the milder winter temperatures. Normally, these creatures would not survive in such a harsh climate, but with the increasing global temperatures they can move further north with increasing speed in destructive numbers. Predictions have estimated that this beetle will be responsible for the devastation of 80% of pine in the province by the year of 2015.

Eradication and control efforts are commonly made against invasive species. However, in areas with multiple introduced species, it can become very difficult to foresee the consequences of various control efforts. Eradicating one invasive species may actually lead to increased damage from another.

The New Zealand ecosystem, only recently populated by humans, has faced many difficulties because of human-introduced species. Their many “management responses” dealing with the threats of invasive plants and animals have often had unforeseen consequences. Livestock, brought by human colonists has limited the habitat of Whitaker’s skink. However, when livestock was removed from certain areas to restore skink populations, predators moved in only to further reduce the skink numbers.

Despite difficulties faced in ecological restorative efforts, they are exceedingly important in maintaining diversity. To be successful, the control projects must be “intensive” and continued for long periods of time, otherwise any progress made with restoration will be lost. Also, when considering a project, all possible outcomes must be considered to ensure that more negative effects on the system are not accidently created.

It should be noted that many successful control efforts in have been documented, and that native species is preservation can be achieved. As global temperatures rise, these efforts will be more and more essential to preserving biodiversity and help slow the accelerating rates of extinction worldwide.

Berger, Matthew. “Invasive Species Threaten US Biodiversity” Guardian Environment Network. <http://www.guardian.co.uk/environment/2010/jan/05/invasive-species-us-waterways>
5 Jan 2010.

Strong, Donald and Robert Pemberton. “Biological Control of Invading Species–Risk and Reform.” Science Magazine. Vol. 288: 1969-1970. 16 Jun 2000.

Norton, David. “Species Invasions and the Limits to Restoration: Learning from the New Zealand Experience.” Science Magazine. Vol. 325: 569-571. 31 Jul 2009.

Leave a comment

Filed under Biology, Ecology, Genetics, Policy

In the Middle of a Mass Extinction

by Krista Bergesen

The phrase “mass extinction” can conjure some scary images. Maybe one person imagines a giant meteorite hitting the earth and killing all of the dinosaurs, while another person may think of the last article they read about the human impact on the environment. Either way, it doesn’t sound like a very upbeat topic.

But what is mass extinction anyway? For one, it encompasses much more than what many of us can fathom. It usually means that at least 75% of the species globally have or are dying out on the planet. The planet would never have the same species again, and it would take around 10 million years to regenerate the same species diversity that had once existed.

It may not surprise a lot of people to know that we are in the midst of the largest extinction since that of the dinosaurs. Magazines, television ads, and even movies have tried to spread the word. Some of the messages are depressing, some are inspirational. Either way, the message is clear: the extinction is happening and humans are a major cause.

In a recent study done on the mammals in North America and their extinction rate, a group of scientists concluded that with the migration of humans to the North American continent the “normal” species’ richness declined 15-42%. Going by the definition of a mass extinction said earlier, North American mammals are already one fifth to one half of the way there. And this was before the effects of industrialization.

The anthropogenic time period, or era in which humans have existed is referred to as the “Holocene Period.” When compared with fossil samples from preceding periods, it was concluded that the beginning of the dominance of humans on the North American continent is concurrent with the decline of mammalian diversity. There has been an extinction of nine subspecies and a significant loss of habitat for other North American mammals because of the predominance of humans on the landscape.  Also, the growth of human biomass has matched the decline of the biomass of other species. Thus, the diversity of mammals, as well as the diversity of other animals is being greatly threatened by human development.

Although the study done on North American mammals is by no means representative of the whole world, it does establish one important fact. It quantifies the extinction of a certain type of animal that stands for an important part of the animal population.

In 2006, an estimate was put out by the World Conservation Union stating that 844 species had gone extinct in the past 500 years, attributing the causes to “habitat change, over-exploitation, the introduction of invasive species, nutrient loading, and climate change.” Techniques used for agriculture homogenize the plant life, and often can rid animals of their habitat or food sources. And none of these problems have shown any sign of slowing.

So what can be done? It’s pretty obvious that things have not been going well for other species on the planet with the rapid growth of the human population. For one, awareness, along with conscious action will be very important. Reserves for the natural environment need to be maintained and added to, as well as a development of sustainable energy and food production practices. Sounds difficult, and maybe impossible at this point. But the point is that something needs to be done now or the planet will face a loss of many diverse and important creatures.

Sources:

Reuters. “Humans spur worst extinctions since dinosaurs.” ABC News Online.< http://www.abc.net.au/news/newsitems/200603/s1596740.htm >. 21 March 2006.

Carrasco, Mark, et al. “Quantifying the Extent of North American Mammal Extinction Relative to the Pre-Anthropogenic Baseline”. PloS one. 2009. Volume 4; Issue 12. 8331.

Barnosky, Anthony. “Megafauna biomass tradeoff as a driver of Quaternary and future extinctions.” The National Academy of Sciences of the USA. 2008. Volume 105. 11543-11548.

Leave a comment

Filed under Biology, Ecology, Policy

Chlorine in Your Bleach?

By: Lizzie Caldwell

Through consistent pressuring from environmental watchdogs such as Greenpeace, Clorox has made plans to stop using chlorine in their bleach. This could be a good thing and a bad thing. Think of a swimming pool. Chlorine is extremely reactive, which makes it a really effective chemical to use against bacteria and other organic waste that can make us sick.  This is why we chlorinate pools every day. However, because chlorine is extremely reactive, it can be dangerous to our bodies and to the environment when it gets thrown into the ocean. This is why we are told not to swim in pools shortly after chlorine is thrown in. After a few hours, chlorine reacts with organic molecules that come from everyone’s mouths, feet, hair and skin to produce neutralized compounds that will not make us sick, and we can swim in the pools again. For the same reasons, chlorine in laundry detergent is good because it gets rid of those food and grass stains, but bad because it can be potentially harmful to us and the surrounding environment (after the waste with chlorine gets dumped into oceans).
Chlorine is strongly electronegative, which is what makes it reactive. Electronegativity is when an atom doesn’t have enough (or has too many) electrons to make it stable. If you look at the periodic table of elements, you can see the row of helium, neon, and argon is the last row on the right. These elements aren’t reactive because their “outer shell of electrons” are completely filled. Each outer shell, except for hydrogen and helium, has space for 8 electrons. The element directly before or directly after this last row has 1 too many electrons for stability or 1 too few electrons for stability.

Being so close to a stable state makes the element VERY eager to gain an electron or give away an electron. Chlorine in particular is very eager to gain an electron, and becomes attracted to other elements that are very eager to lose an electron. This trend holds true for any element in row 1 and 17. Row 18 is for the most stable elements, which is where neon and argon lie.

Chlorine is particularly bad for oceans because of this reactivity. When chlorine comes into contact with water (which consists of 2 hydrogen atoms attached to an oxygen atom, thus H20), chlorine rips apart the bonds between those elements and can turn into various acids: hydrochloric acid (HCl), chloric acid (HClO3), perchloric acid (HClO4) and more. When we wash our clothes and our laundry detergent goes down the drains into the ocean, we are literally making the ocean more acidic.

Whether your background in chemistry is strong or weak, many people know that acid is bad! Luckily, the acid isn’t strong enough to harm humans, but fish and plants that live in the ocean are much more sensitive to the acid. Increasing the acidity of the ocean literally deteriorates ocean organisms. This is good for our swimming pools since we don’t want our swimming pools full of animals and wildlife – but do we want our oceans looking like our swimming pools? Lifeless and sterile? Where would our sushi and our crab cakes come from? Who would want to scuba dive anymore?

Of course, there is another portion to every argument. In this case people are concerned about how effective bleach without chlorine can be at removing stains we don’t want. One company, BleachTech, can make bleach directly from salt without isolating chlorine (table salt is made up of sodium molecules and chlorine molecules). Since the House of Representatives passed H.R. 2868, which requires high-risk chemical plants and water-treatment facilities to use safer processes or chemicals, other bleach and laundry detergent companies will follow suit to find safer and more eco-friendly alternatives instead of chlorine. Clorox has also made a statement that the new bleach will not be different in color, smell or quality. Thus, Clorox’s decision to remove chlorine from their bleach is a very good thing because it will prevent the environment from suffering further damage, while the quality is not compromised.

Leave a comment

Filed under Chemistry, Policy